Abstract

In order to design full-envelop flight control law for a certain helicopter, a novel method based on multi-objective genetic algorithm (MOGA) is put forward. In this method, the design of flight control law is viewed as a multi-objective optimization problem(MOP) where obtaining optimal performances in each designed flight envelop are treated as sub-objective and that in all designed flight envelop as objective, flight control law's parameters to be searched as decision variables, corresponding performance criteria as constraints. For the MOP, MOGA is used to get the optimal parameters of flight control law in all designed flight envelops. Finally, the novel method is applied to the flight control law's design for the helicopter's pitch motion, the simulation results show that the parameters are feasible and the performances are satisfactory, which further prove that the method is effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.