Abstract

This paper proposes a novel modulation technique and a new balancing control strategy for a single-phase five-level flying-capacitor (FC)-based active-neutral-point-clamped (ANPC) converter. The proposed modulator can control the FC voltage to follow the requested reference value and simultaneously generate the required ac output voltage regardless of the values of the dc capacitor voltages of the converter. By implementing this method, smaller values of the dc-link capacitor and FC can be used even in applications that could experience ripple or transient in the capacitor voltage. In a single-phase five-level ANPC converter applications, where the capacitors can experience pulsation power and dc-link balancing issues, such as grid-connected photovoltaic system, the selection of the reference voltage value for the FC can play an important role to balance the average values of the dc-link capacitor voltage. The proposed new control strategy uses a new reference voltage for the FC to be applied by the new modulator to have an average balanced dc-link voltages as well as an ac output voltage with good power quality. Simulation studies and experimental results demonstrate the effectiveness of the proposed modulation technique and control strategy even with relatively small dc capacitors to produce high-quality output voltage and current waveforms while maintaining an average balanced dc-link voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.