Abstract

A novel modular positive-sequence estimation algorithm for phasor measurement units (PMUs) is described in this paper with a focus on the restrictions imposed by the IEEE C37.118.1–2011 standard. The first stage consists in a three-phase demodulator which allows us to separate the positive-sequence from the negative-sequence signal in the frequency domain and to eliminate the zero-sequence signal. The second stage is a prefilter that mitigates noise and interference, thus relaxing the filtering requirements of the following stage. The suitability of a linear-phase FIR filter is shown and a comparison of single and multistage designs is presented. On the third stage, a digital state-space-based extension of a synchronous reference frame-phase-locked loop is used for tracking of amplitude, phase, frequency, and rate of change of frequency. It is shown that a phase predictor inside the loop is required. The fourth stage is a compensation algorithm which takes into account the narrowband nature of the input signal to perform an accurate compensation of the filter effects on the signal of interest. Analytical properties of the system are then presented, providing insight into the main factors that affect global performance. Finally, a strict evaluation of the system is presented for both M and P class PMU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.