Abstract
The key obstacle in integrating high-voltage direct current (HVDC) point-to-point networks into meshed multiterminal HVDC networks (MTDC) is the absence of dc circuit breakers (DCCBs), which can timely and reliably isolate the faulty HVDC network from the MTDC. In this paper, a novel hybrid-type superconducting DCCB model (SDCCB) is proposed. The SDCCB has a superconducting fault current limiter (SFCL) located in the main line, to limit the fault current until the final trip signal to the SDCCB is given. After the trip signal, insulated-gate bipolar transistor (IGBT) switches located in the main line will commutate the fault current into a parallel line, where dc current is forced to zero by combination of IGBTs and surge arresters. DC fault current behavior in MTDC and fundamental requirements of DCCB for MTDC were described, followed by an explanation of the working principles of the SDCCB. To prove the viability of the SDCCB, a simulation analysis demonstrating SDCCB current interruption performance was done for changing the intensity of dc fault current. It was observed that the passive current limiting by SFCL caused significant reduction in fault current interruption stress for SDCCB. Furthermore, fundamental design requirements for SFCL, including the effect of SFCL quenching impedance on SFCL voltage rating and energy dissipation capacity, were investigated. Finally, advantages and limitations of the SDCCB were highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.