Abstract

With the rapid development of information technology, data-driven fault diagnosis has gained more and more attention because it provides a new way for enterprises to save costs. Considering that there are few abnormalities in equipment operation in actual industrial applications, it is still a challenge to implement data-driven fault diagnosis that requires a large amount of fault data. To tackle the challenge, this paper proposes a model-independent data augmentation method, which is a weighted combination of the two time series data augmentation methods, i.e. Gaussian noise and signal stretching. The experimental dataset is collected from an intelligent motor test platform. The fault diagnosis model based on support vector machine and feedforward neural network are applied to study the ability of the proposed data augmentation method in terms of model independence. Experimental results show that the proposed data augmentation methods can significantly improve the accuracy of fault diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.