Abstract

Wind power has quickly developed in the world owing to the advantages of pure, inexpensive, and inexhaustible. However, strong volatility, unmanageable, and randomness make it difficult to achieve secure wind power generation. An excellent wind power prediction is effective for power system scheduling and safely stable operation. Vision Transformer (ViT) model is introduced for building a connection of the extracted characteristics and desired output. Long-short term memory (LSTM) is combined with ViT, and a new wind power forecasting model is proposed in this paper. For the proposed LSTM-ViT model, the temporal aspects of the weather data and correspondence properties are extracted based on LSTM. The link of the output and characteristic is established in view of the ViT, and the multi-headed self-attentiveness mechanisms in ViT fully exploit the relationship between the inputs. The validity and sophistication of the LSTM-ViT method are validated by the climate statistics and statistics of wind power. The results indicate that the wind power forecasting model is provided with higher prediction accuracy. The forecast results for the fourth quarter are used as analysis cases. The root mean square error of the method is reduced by 41.77%, 16.60%, 28.72%, 26.81%, and 16.25% compared to gate recurrent unit (GRU), LSTM, ViT, convolutional neural network (CNN)-ViT, and GRU-ViT respectively. The mean absolute error of the LSTM-ViT method in the first quarter is 0.327, with model comparison values reduction of 33.71%, 38.30%, 32.99%, 17.63% and 10.65% respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call