Abstract

AbstractPrecise control over sequence structure in copolymers is essential for chemical product engineering. The complexity of sequence structures results in the challenging characterization of monomer sequences. Herein, a chemical composition model (CD model) is developed to record the distribution density of monomers in the chain segment, where the deviation of the chemical composition function between a copolymer and its ideal sequence structure can directly map the sequence structure quality. The application of the CD model in randomly generated virtual copolymers demonstrates that the model has great sensitivity and discrimination to evaluate sequence structures accurately. Furthermore, the CD model is combined with the kinetic Monte Carlo algorithm to explicitly track the evolution of sequence structure quality in the copolymerization process. The CD model provides an insight into the evolution of sequence structure, which is conducive to building the bridge between molecular structure and properties for the development of chemical product engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.