Abstract

The prediction of protein folding rates is of paramount importance in describing the protein folding mechanism, which has broad applications in fields such as enzyme engineering and protein engineering. Therefore, predicting protein folding rates using the first-order of protein sequence, secondary structure and amino acid properties has become a very active research topic in recent years. This paper presents a new fuzzy cognitive map (FCM) model based on deep learning neural networks which uses data obtained from biological experiments to predict the protein folding rate. FCM extracts the important data features from the protein sequence which then initializes the deep neural networks effectively. It was found that the Levenberg-Marquardt (LM) algorithm for deep neural networks can improve the prediction accuracy of the protein folding rates. The correlation coefficient between the predicted values and those real values obtained from experiments reached 0.94 and 0.9 in two independent numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.