Abstract
In this paper, we propose a novel maximum-likelihood (ML) decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, possibly exploiting the advantages of both the depth- and breadth-first search methods in an organized way. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.