Abstract
AbstractAimAutosomal dominant non‐syndromic hearing loss is a common sensorineural disorder with extremely high genetic heterogeneity. CEA antigen‐related cell adhesion molecule 16(CEACAM16)is a secreted glycoprotein encoded by the CEACAM16 gene. Mutations in CEACAM16 lead to autosomal dominant non‐syndromic hearing loss in humans, due defects in the tectorial membrane of the inner ear. Here we reported a novel missense variant in CEACAM16 gene causes autosomal dominant non‐syndromic hearing loss.Material and methodsA four‐generation Chinese family affected by late‐onset and progressive hearing loss was enrolled in this study. The proband was analyzed by targeted next‐generation sequencing and bioinformatic analysis. And in vitro experiments were performed in overexpressed transfected HEK293T cells to investigate the pathogenesis of the mutant protein.ResultsWe identified a novel missense variant in the CEACAM16 gene c.763A>G; (p.Arg255Gly) as causing autosomal dominant non‐syndromic hearing loss in the Chinese family. Using Western blot analysis, ELISA, and immunofluorescence we found increased expression level of the secreted mutant CEACAM16 protein, both intracellularly and extracellularly, compared with wild type CEACAM16 protein.ConclusionOur study showed that the p.Arg255Gly variant leads to increased secretion of mutant CEACAM16 protein, with potential deleterious effect to the function of the protein. Our findings expand the mutation spectrum of CEACAM16, and further the understanding CEACAM16 function and implications in disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.