Abstract

To demonstrate the underlying genetic defect that contribute to inherited cataract in a northern Chinese pedigree. The study recruited a family pedigree with a diagnosis of bilateral coronary cataract with blue punctate opacities. Fourteen family members and 100 healthy volunteers were enrolled. DNA sample of the proband in this family were analyzed by high-throughput sequencing, which was then demonstrated by Sanger sequencing in the remained people in the family and 100 controls. The functional effect of mutant genes was investigated via bioinformatics analysis, including Polymorphism Phenotyping version2 (PolyPhen-2), Protein Variation Effect Analyzer (PROVEAN v1.1.3) Scale-Invariant Feature Transform (SIFT), and Mutation Taster. In this three-generation family, a novel heterozygous mutation was found in the kinase domain of CRYBA1 gene (c.340C > T, p.R114C), which was only detected in patients in the family with inherited cataract and were not detected in the remained people in the family nor in normal people. The pathogenic effect of the mutation was verified via bioinformatics analysis. Our study presented the molecular experiments to confirm that a novel missense mutation of c.340 C > T located in exon 4 of CRYBA1 gene results in a bilateral coronary cataract with blue punctate opacities, which enriches the mutation spectrum of CRYBA1 gene in inherited cataract and deepens the understanding of the pathogenesis of inherited cataract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.