Abstract

Charcot-Marie-Tooth type 2P (CMT2P) has been associated with frameshift mutations in the RING domain of LRSAM1 (an E3 ligase). This study describes families with a novel missense mutation of LRSAM1 gene and explores pathogenic mechanisms of CMT2P. Patients with CMT2P were characterized clinically, electrophysiologically, and genetically. A neuronal model with the LRSAM1 mutation was created using CRISPR/Cas9 technology. The neuronal cell line along with fibroblasts isolated from the patients was used to study RNA-binding proteins. This American family with dominantly inherited axonal polyneuropathy reveals a phenotype similar to those in previously reported non-US families. The affected members in our family cosegregated with a novel missense mutation Cys694Arg that alters a highly conserved cysteine in the RING domain. This mutation leads to axonal degeneration in the in vitro neuronal cell line. Moreover, using protein mass spectrometry, we identified a group of RNA-binding proteins (including FUS, a protein critically involved in motor neuron degeneration) that interacted with LRSAM1. The interactions were disrupted by the Cys694Arg mutation, which resulted in reduction of intranuclear RNA-binding proteins. Our findings suggest that the mutant LRSAM1 may aberrantly affect the formation of transcription machinery. Given that a similar mechanism has been reported in motor neuron degeneration of amyotrophic lateral sclerosis, abnormalities of RNA/RNA-binding protein complex may play a role in the neuronal degeneration of CMT2P. Ann Neurol 2016;80:834-845.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.