Abstract

Indoor visible light communication (VLC) systems are now possible because of advances in light emitting diode and laser diode technologies. These lighting technologies provide the foundation for multiple-input multiple-output (MIMO) data transmission through visible light. However, the channel matrix can be strongly correlated in indoor MIMO-VLC systems, preventing parallel data streams from being decoded. Here, in $2\times 2$ MIMO-VLC systems, we describe a mirror diversity receiver (MDR) design that reduces the channel correlation by both blocking the reception of light from one specific direction and improving the channel gain from light from another direction by utilizing a double-sided mirror deployed between the receiver’s photodetectors. We report on the channel capacity of the MDR system and the optimal height of its mirrors in terms of maximum channel capacity. We also derived analytic results on the effect of rotation on MDR’s performance. Based on numerical and experimental results, we show that the double-sided mirror has both constructive and destructive effects on the channel matrix. Our design can be used with previously described non-imaging systems to improve the performance of indoor VLC systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call