Abstract

Based on the advantages of the topology optimization method, a new mini-channel heat sink with arc-type design domain topology design is proposed in this work. This arc-type design domain is used to realize the flow distribution uniformity. Two dual objective optimization functions were selected to complete the topology design, and two topology optimization mini-channel models M1 and M2 were obtained. The aim of M1 is to achieve minimum average temperature and fluid dissipation of the heat source area. The fluid dissipation was used to characterize the pressure drop characteristics. The aim of M2 is to achieve minimum temperature difference and fluid dissipation of the heat source area. Then, the fluid and heat transfer characteristics of M1, M2, and the traditional straight heat sink M3 were analyzed by numerical simulation. Compared with straight mini-channel heat sink M3, the temperature differences of the mini-channel heat sink designed M1 and the mini-channel heat sink designed M2 were decreased by 31.6% and 42.48%, respectively. Compared with M3, the pressure drops of M1 and M2 were decreased by 22.7% and 30.9%, respectively. Moreover, the Nusselt number of the mini-channel heat sink designed M1 was increased by 34.43%. In comparison, that of the mini-channel heat sink-designed M2 increased by 15.86%. The thermal performance evaluation criteria (PEC) showed that the PEC value of M1 was greater than 1.4, while the PEC value of M2 was less than 1.14. Finally, experiments were conducted for M1 to verify the accuracy of the numerical simulation. It was found that the simulation results agreed well with the experimental results.

Highlights

  • The development of microelectronics technology makes electronic equipment becoming smaller, more integrated and more intelligent

  • It can be seen that the curved design domain distributes the fluid to the channel evenly and collects the fluid to the unified outlet

  • Two kinds of mini-channel heat sinks with high heat transfer capacity are obtained by using topology optimization technology

Read more

Summary

Introduction

The development of microelectronics technology makes electronic equipment becoming smaller, more integrated and more intelligent. This leads to the electronic equipment suffering higher heat flux, which can seriously affect the life and performance of electronic chips. In the field of heat transfer, some new theoretical research methods are proposed. Ma et al [14] studied the natural convection heat transfer of nanofluids (water/Al2 O3 ) in an inclined square enclosed space by using the finite volume method (FVM). Their results showed that nano additives increase the heat transfer rate.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.