Abstract

A microwave based method for the surface modification of titanium was demonstrated for biomedical applications. The surfaces were characterized using XRD, HR-SEM and Goniometer. The absence of rutile, anatase and brookite phases and the presence of an amorphous near-native oxide film were confirmed. The microwave oxidized (MWO) surfaces exhibited a significant antibiofilm activity against Escherichia coli and Staphylococcus aureus. In the presence and absence of the water pot, the oxidation times of 60 and 20min demonstrated a high antibiofilm property respectively. The surfaces turned more hydrophobic with increasing oxidation time. The viability of L6 cells remained unaffected on the MWO oxidized surfaces, signifying no loss in biocompatibility. This systematic study presents MWO as a promising technique for solving the biofilm problem faced by the otherwise robust titanium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call