Abstract
A characterization is reported of the major cytoskeletal protein, called IEF (isoelectric focusing)-51K, of marginal band microtubule coils from human blood platelets (Kenney, D. M. and Linck, R. W. (1985) J. Cell Sci. 78, 1-22). IEF-51K is a unique biochemical species which is distinguishable from platelet and mammalian neuronal alpha-tubulin and beta-tubulin by 1) its faster mobility on discontinuous sodium dodecyl sulfate electrophoresis corresponding to an apparent Mr 51,000; 2) its more alkaline relative isoelectric point at pH 5.7 compared with that of alpha- and beta-tubulin at pH 5.3 and 5.5, respectively; 3) lack of coincidence in peptide maps prepared with chymotrypsin or Staphylococcus aureus V8 protease; and 4) lack of immunochemical cross-reactivity of polyclonal anti-IEF-51K with alpha- and beta-tubulin and of monoclonal anti-alpha-tubulin and anti-beta-tubulin with IEF-51K. In contrast to its chemical uniqueness, IEF-51K is tubulin-like in some of its properties. IEF-51K is localized in the marginal band of intact platelets by immunofluorescence; it undergoes cycles of microtubule disassembly/reassembly both in vitro and in vivo. Furthermore, IEF-51K was not extracted from isolated Taxol-stabilized marginal band microtubules by elevated NaCl concentrations (to 0.45 M), conditions that do not disrupt the polymeric structure of alpha- and beta-tubulin. These results indicate that IEF-51K together with alpha-tubulin and beta-tubulin are the major structural polypeptides of platelet marginal band microtubules. The unusual subunit composition of the platelet marginal band microtubule may be related to specialization(s) of microtubule structure and function in the marginal band coil of platelets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.