Abstract

Micropeptides are an emerging class of proteins that play critical roles in cell signaling. Here, we describe the discovery of a novel micropeptide, dubbed slitharin (Slt), in conditioned media from Cardiosphere-derived cells (CDCs), a therapeutic cardiac stromal cell type. We performed mass spectrometry of peptide-enriched fractions from the conditioned media of CDCs and a therapeutically inert cell type (human dermal fibrobasts). We then evaluated the therapeutic capacity of the candidate peptide using an in vitro model of cardiomyocyte injury and a rat model of myocardial infarction. We identified a novel 24-amino acid micropeptide (dubbed Slitharin [Slt]) with a non-canonical leucine start codon, arising from long intergenic non-coding (LINC) RNA 2099. Neonatal rat ventricular myocytes (NRVMs) exposed to Slt were protected from hypoxic injury in vitro compared to a vehicle or scrambled control. Transcriptomic analysis of cardiomyocytes exposed to Slt reveals cytoprotective capacity, putatively through regulation of stress-induced MAPK-ERK. Slt also exerted cardioprotective effects in rats with myocardial infarction as shown by reduced infarct size 48 h post-injury. Conclusions and clinical relavance: Thus, Slt is a non-coding RNA-derived micropeptide, identified in the extracellular space, with a potential cardioprotective function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call