Abstract

Dopamine is a small molecule inspired by the dopamine motif of mussel foot proteins, and PDA is formed by the self-polymerization of dopamine. Under the UV-irradiation,PDA would be oxidized by reactive oxygen species (ROS) which were produced by photocatalytic reactions on TiO2 surfaces,thus regulating the adhesion behavior of endothelial cells (ECs) TiO2 inhibited platelet (Plt) adhesion after UV exposure. Polydopamine (PDA)-TiO2 micropatterns (P-PDA-TiO2) were prepared by magnetron sputtering and photolithography. This micropatterns successfully achieves selective adhesion of Plt and ECs. The selective adhesion of ECs disappears after vacuum reduction. In contrast to conventional cell patterning strategies, P-PDA-TiO2 can easily achieve pattern separation of ECs and Plts and provide a new concept for building complex blood-contacting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.