Abstract

It has been demonstrated that gas-filled microbubble contrast agents, based on their volume changes, can serve as pressure probes in an MR field. It was recently reported that such an MR-based pressure measurement with microbubbles at 1.5 T must make use of microbubbles that have a volumetric magnetic susceptibility difference with the blood of at least 34 ppm in SI units. In this work, we show through analytical approximations and numerical simulations that such a microbubble formulation can be achieved by coating typical lipid-shelled microbubbles with particles of high dipole moment. Through finite-element simulations we demonstrate that the effective volumetric magnetic susceptibility of a coated microbubble is dependent on the radius, the shell volume fraction and the magnetic susceptibility of the particulates on the shell. Our calculations suggest that a suitable microbubble formulation which will be MR-sensitive to small pressure changes at 1.5 T must be 2–3 µm in radius and be uniformly coated with single-domain magnetic nanoparticles, such as magnetite, at shell volume fractions below 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.