Abstract

A novel chitinase gene of 888bp from Streptomyces bacillaris was cloned and expressed in Escherichia coli BL21. The purified recombinant enzyme (SbChiAJ103) was identified as the first microbial-derived family 19 endochitinase that showed exochitinase activity. SbChiAJ103 exhibited the substrate preference for N-acetylchitooligosaccharides with even degrees of polymerization and the capability to specifically hydrolyze colloidal chitin into (GlcNAc)2. Mono-methyl adipate was employed as a novel linker for the efficient covalent immobilization of chitinase on magnetic nanoparticles (MNPs). The immobilized SbChiAJ103, SbChiAJ103@MNPs, exhibited superior pH tolerance, temperature stability, and storage stability than free SbChiAJ103. Even after incubation at 45°C for 24h, SbChiAJ103@MNPs could retain more than 60.0% initial activity. As a result, the enzymatic hydrolysis yield of SbChiAJ103@MNPs increased to 1.58 times that of free SbChiAJ103. Moreover, SbChiAJ103@MNPs could be reused by convenient magnetic separation. After 10 recycles, SbChiAJ103@MNPs could retain almost 80.0% of its initial activity. The immobilization of the novel chitinase SbChiAJ103 paves the way to the efficient and eco-friendly commercial production of (GlcNAc)2. KEY POINTS: • The first microbial GH19 endochitinase with exochitinase activity was reported. • Mono-methyl adipate was first employed to immobilize chitinase. • SbChiAJ103@MNPs showed excellent pH stability, thermal stability, and reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call