Abstract

In this work, a novel grain boundary formulation for inter-and trans-granular cracking of polycrystalline materials is presented. The formulation is based on the use of boundary integral equations for anisotropic solids and has the advantage of expressing the considered problem in terms of grain boundary variables only. Inter-granular cracking occurs at the grain boundaries whereas trans-granular cracking is assumed to take place along specific cleavage planes, whose orientation depends on the crystallographic orientation of the grains. The evolution of inter-and trans-granular cracks is then governed by suitably defined cohesive laws, whose parameters characterize the behavior of the two fracture mechanisms. The results show that the model is able to capture the competition between inter-and trans-granular cracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.