Abstract

The repertoire of receptors expressed by peripheral T cells is the result of two selective events that occur during intrathymic development. Positive selection expands cells able to recognize foreign peptides presented by self MHC molecules, and negative selection eliminates cells reactive to self MHC molecules and associated self peptides. Chimaera studies suggest that, at least in the case of T cells recognizing MHC class II, interaction with thymic cortical epithelial cells is responsible for the former, whereas thymic medullary cells, of bone marrow origin, mediate the latter. This view of thymic development is supported by recent morphometric analyses, showing that autoreactive cells are found in thymic cortex but not medulla. Although numerous studies have shown that MHC class II molecules are expressed in both sites, none provides any explanation for the differential selection of T cells that is observed. Here, we describe a novel MHC class II epitope which is found on cells in thymic medulla but not cortex. The antibody to this epitope reacts with about 10% of class II molecules on B cells and may be recognizing a self peptide-MHC complex. These results provide the first evidence for differential expression of class II epitopes in different tissues and are compatible with the hypothesis that different ligands, rather than different affinity thresholds for the same ligand, are involved in positive and negative selection of the T-cell repertoire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.