Abstract

Network operators and utilities are challenged with increasing extreme weather conditions, resulting in interrupted power supply to critical loads. Resiliency metrics, which can capture the level of preparedness to resist adverse impact of extreme conditions on a distribution system, can be leveraged in multiple ways to provide better operation of the network and design of the future systems. In this paper, a methodology to quantify resiliency and maintain power supply to critical loads (CLs) during extreme contingencies has been proposed. Resiliency evaluation of power distribution system has been defined as a multi-criteria decision making problem and quantified using graph theoretic approach and Choquet integral. The algorithm proposed in this paper to calculate the resiliency for all feasible network configurations supplying CLs in a network is useful in planning as well as operation of the distribution network. The application of the proposed algorithm is demonstrated through several case studies using two proximal CERTS microgrids and IEEE 123 node distribution system. Simulation studies are also provided for planning of resilient network, by placing additional switches in the considered distribution systems with microgrid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.