Abstract
Leakage power loss is a major concern in deep-submicron technologies as it drains the battery even when a circuit is completely idle. The subthreshold leakage current increases exponentially in deep-submicron processes and hence is a crucial factor in scaling down designs. Efficient leakage control mechanisms are necessary to maximize battery life. In this paper, a novel technique that achieves cancellation of leakage effects in both the pull-up network (PUN) as well as the pull-down network (PDN) for any CMOS complementary circuit is presented. It involves voltage balancing in the PUN and PDN paths using sleep transistors. Experimental results show significant leakage power savings (average of 54X at a temperature of 27oC) in CMOS circuits employing this sleep circuitry when compared to standard CMOS circuits. At any given temperature, using our methodology the leakage power loss increases linearly with increasing circuit complexity and hence the leakage loss can be predicted for any CMOS complementary circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.