Abstract

AbstractA new methodology for modeling the creep behavior of polymers at different temperatures, by using phenomenological constitutive models, is presented in this paper. The viscoelastic model is given by a combination of springs and dashpots and is used to describe the nonlinear response of polymers, and the viscoplastic formulation is given by a power‐law equation. The approach proposed in this work is based on building master curves for different stress levels, and finding the dependency of the constitutive parameters with the temperature. After fitting the equations to the tensile creep tests at different temperatures, the final constitutive formulation is capable of modeling the behavior of polymers at any stress level and temperatures. Poly methyl metacrytale (PMMA) was used to investigate the accuracy of this proposal, and the results showed good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.