Abstract

Solar sails exploit the radiation pressure as propulsion system. Sunlight is used to propel space vehicles by reflecting solar photons from a large and lightweight material, so that no propellant is required for primary propulsion. Kapton seems to be the most suitable material for the sail production and in the space missions till now activated booms as deployment systems have always been used. In this work, an innovative self-deploying system based on NiTi shape memory wires has been designed and manufactured in a small-scale prototype. As kapton has always been employed with a thin Al coating on the surface of the sail, commercial pure Al thin sheets with thin adhesive kapton have been used in order to simulate the sail. The attention has been focused, in the deployment experiments performed in the laboratory, on the effect of different heating methods and different pressure conditions on the activation times. The folded configuration chosen has been deployed in atmospheric condition and in low pressure condition (0.05 bar) inside a oven connected to a rotary pump. For what concerns the heating methods, the attention has been focused on low-pressure oven ISCO NSV 9035 (1.3 kW) and on halogen lamp (1 kW) in order to obtain the self-deployment of the sail. Some comparisons between the two configurations in the different environmental conditions have been performed. In all cases, the full self-activation of the sail has been achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.