Abstract

Kinematic motion detection aims to determine a person’s actions based on activity data. Human kinematic motion detection has many valuable applications in health care, such as health monitoring, preventing obesity, virtual reality, daily life monitoring, assisting workers during industry manufacturing, caring for the elderly. Computer vision-based activity recognition is challenging due to problems such as partial occlusion, background clutter, appearance, lighting, viewpoint, and changes in scale. Our research aims to detect human kinematic motions such as walking or running using smartphones’ sensor data within a high-performance framework. An existing dataset based on smartphones’ gyroscope and accelerometer sensor values is utilized for the experiments in our study. Sensor exploratory data analysis was conducted in order to identify valuable patterns and insights from sensor values. The six hyperparameters, tunned artificial indigence-based machine learning, and deep learning techniques were applied for comparison. Extensive experimentation showed that the ensemble learning-based novel ERD (ensemble random forest decision tree) method outperformed other state-of-the-art studies with high-performance accuracy scores. The proposed ERD method combines the random forest and decision tree models, which achieved a 99% classification accuracy score. The proposed method was successfully validated with the k-fold cross-validation approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call