Abstract

Water level prediction of rivers, especially in flood prone countries, can be helpful to reduce losses from flooding. A precise prediction method can issue a forewarning of the impending flood, to implement early evacuation measures, for residents near the river, when is required. To this end, we design a new method to predict water level of river. This approach relies on a novel method for prediction of water level named as RBF-FFA that is designed by utilizing firefly algorithm (FFA) to train the radial basis function (RBF) and (FFA) is used to interpolation RBF to predict the best solution. The predictions accuracy of the proposed RBF–FFA model is validated compared to those of support vector machine (SVM) and multilayer perceptron (MLP) models. In order to assess the models’ performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results show that the developed RBF–FFA model provides more precise predictions compared to different ANNs, namely support vector machine (SVM) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real time water stage measurements. The results specify that the developed RBF–FFA model can be used as an efficient technique for accurate prediction of water stage of river.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call