Abstract

Permanent magnet synchronous machines (PMSMs) are widely used owing to high power density, high efficiency, etc. Core losses account for a significant component of the total loss in PMSMs beside winding losses. Therefore, it is necessary to consider core losses when designing PMSMs according to actual research applications. In this paper, taking four typical rotor structures (surface-mounted, embedded, “—” shape, “V” shape) as examples, an analysis method is proposed to predict the influence of different rotor structures on core loss of PMSMs. In the case of the same stator and winding structures, due to the influence of the rotor structure on the magnetic circuit, the corresponding variation law of the magnetic field in the stator core is studied. This method analyzes the radial and tangential components of magnetic flux density vector of the 4 representative points (stator tooth tip, middle tooth and yoke part), and then evaluates the entire core loss through finite element analysis results. In order to verify the method, a prototype was manufactured. The experimental results show good performance of the proposed method of this paper. It provides reference for selecting the appropriate rotor structure and designing the corresponding PMSM according to different specification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call