Abstract

This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade, in which manufacturing errors (MEs), assembly errors (AEs), tooth deflections (TDs) and profile modifications (PMs) are considered. For the prediction, a discrete gear model for generating the error tooth profile based on the ISO accuracy grade is presented. Then, the gear model and a tooth deflection model for calculating the tooth compliance on gear meshing are coupled with the transmission error model to make the prediction by checking the interference status between gear and pinion. The prediction method is validated by comparison with the experimental results from the literature, and a set of cases are simulated to study the effects of MEs, AEs, TDs and PMs on the static transmission error. In addition, the time-varying backlash caused by both MEs and AEs, and the contact ratio under load conditions are also investigated. The results show that the novel method can effectively predict the range of the static transmission error under different accuracy grades. The prediction results can provide references for the selection of gear design parameters and the optimization of transmission performance in the design stage of gear systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.