Abstract
With the increasing popularity of rail transit and the increasing number of light rail trips, the vulnerability of rail transit has become increasingly prominent. Once the rail transit is maliciously broken or the light rail station is repaired, it may lead to large-scale congestion or even the paralysis of the whole rail transit network. Hence, it is particularly important to identify the influential nodes in the rail transit network. Existing identifying methods considered a single scenario on either betweenness centrality (BC) or closeness centrality. In this paper, we propose a hybrid topology structure (HTS) method to identify the critical nodes based on complex network theory. Our proposed method comprehensively considers the topology of the node itself, the topology of neighbor nodes, and the global influence of the node itself. Finally, the susceptible–infected–recovered (SIR) model, the monotonicity (M), the distinct metric (DM), the Jaccard similarity coefficient (JSC), and the Kendall correlation coefficient (KC) are utilized to evaluate the proposed method over the six real-world networks. Experimental results confirm that the proposed method achieves higher performance than existing methods in identifying networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.