Abstract

The in vitro sensitization assay LCSA (Loose-fit Coculture-based Sensitization Assay) has proved reliable for the detection of contact sensitizers in the past. However, the coculture of human monocyte-derived dendritic cells (DCs) with primary human keratinocytes (KCs) in serum-free medium is relatively complex compared to other sensitization assays which use continuous cell lines. To facilitate high-throughput screening of chemicals, we replaced KCs with the HaCaT cell line under various culture conditions. Coculture of HaCaT with peripheral blood mononuclear cells in serum-supplemented medium leads to generation of CD1a+/CD1c+ DCs after addition of GM-CSF, IL-4, and TGF-β1 (as opposed to CD1a-/CD1c- DCs which arise in the "classic" LCSA coculture). These cells resemble monocyte-derived DCs generated in monoculture, but, unlike those, they show a marked upregulation CD86 after treatment with contact allergens. All of the nine sensitizers in this study were correctly identified by CD1a+/CD1c+ DCs in coculture with HaCaT. Among the substances were weak contact allergens such as propylparaben (which is false negative in the local lymph node assay in mice) and resorcinol (which was not detected by CD1a-/CD1c- DCs in the "classic" LCSA). The level of CD86 upregulation on CD1a+/CD1c+ DCs was higher for most allergens compared to CD1a-/CD1c- DCs, thus improving the assay's discriminatory power. Three out of four non-sensitizers were also correctly assessed by the coculture assay. A false-positive reaction to caprylic (octanoic) acid confirms earlier results that some fatty acids are able to induce CD86 on DC in vitro. In conclusion, change of the LCSA protocol led to reduction of time and cost while even increasing the assay's sensitivity and discriminatory power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.