Abstract

Wet electrospinning is a simple and efficient method to manufacture continuous nanofiber filaments. However, polyacrylonitrile nanofiber filaments collected using a static water bath are limited for application in certain areas due to their low degree of alignment and breaking stress values. To improve these properties, a novel countercurrent flowing liquid bath collector was combined with a multi-needle electrospinning device. The morphologies, crystalline structures, thermal behaviors and mechanical properties of filaments fabricated under different countercurrent bath liquid motion conditions were investigated. In addition, the forces acting on the nanofibers in the bundling triangular zone under countercurrent liquid bath motion were analyzed. The results showed that the average nanofiber diameter of the filaments decreased with an increase in bath solution motion forces. The maximum alignment degree and breaking stress of the nanofibers were 85 % and 0.63 cN/dtex, respectively, achieved using a liquid flow rate of 80 ml/min and water inlet diameter of 6 mm. The alignment degree of the assembled nanofibers in the bundling triangular zone could be increased by 57 % when using a countercurrent flowing liquid compared with a static liquid bath.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.