Abstract

BackgroundDrug-resistant cell lines, established from drug-sensitive cell lines by drug exposure in vitro, are the most useful cancer models in studies on the mechanism of chemoresistance. However, the success rate of the traditional approaches to construct such cell lines is low because a long time is required for the addition of drugs.MethodsA cell culture technique was used to establish the drug-resistant cell lines from their parental cells. Molecular and cellular biological techniques including flow cytometry, MTT assay, western blotting, and DNA fingerprinting analysis were used to characterize the drug-resistant cell lines. Nude mice were used for xenograft studies.ResultsWe established novel glucocorticoid (GC)-resistant cell lines from 3 GC-sensitive acute lymphoblastic leukemia (ALL) cell lines. First, we established a novel GC-resistant T-ALL cell line, CEM-C7/HDR, by mimicking the microenvironment of the bone marrow and culturing GC-sensitive CEM-C7–14 cells under hypoxia for 5 weeks with a single dexamethasone (Dex) treatment. The CEM-C7/HDR cells had been cultured continuously in drug-free medium under normoxia for 1 year. The IC50 and resistance index (RI) to Dex were maintained at 60~70 μM and 1500~1800, respectively, which is in consistent with the IC50 and RI of GC-resistant CEM-C1–15 cells. To clarify the reliability of the method, we subcloned CEM-C7–14 cells, and obtained Dex-resistant cell lines, CEM-C7-SC2/HDR and CEM-C7-SC14/HDR, from 2 monoclonal cells of CEM-C7–14 by the same method. Moreover, we obtained two additional Dex-resistant B-ALL cell lines, NALM-6/HDR and HXEX-ALL1/HDR, from NALM-6 and HXEX-ALL1 cells with the same approach.ConclusionsCEM-C7/HDR, NALM-6/HDR and HXEX-ALL1/HDR cell lines may serve as useful GC-resistant ALL models for both in vitro and in vivo studies. Culturing under hypoxic condition with a single Dex treatment is a novel and convenient approach for generating stable GC resistant cell lines.

Highlights

  • Drug-resistant cell lines, established from drug-sensitive cell lines by drug exposure in vitro, are the most useful cancer models in studies on the mechanism of chemoresistance

  • Establishment of Dex-resistant acute lymphoblastic leukemia (ALL) cell lines Logarithmically growing CEM-C7–14 cells were cultured under hypoxia condition for 5~6 weeks with or without dexamethasone (Dex) treatment

  • To clarify the mechanisms of resistance development, we selected two GC-sensitive CEM-C7–14 mono-clonal cells, named CEM-C7-SC2 and CEM-C7-SC14, with IC50 values of 0.04 μM and 0.06 μM, respectively. This method resulted in the development of two resistant cell lines named CEM-C7-SC2/HDR and CEM-C7-SC14/HDR, with IC50 values of 100~150 μM at 10PDL

Read more

Summary

Introduction

Drug-resistant cell lines, established from drug-sensitive cell lines by drug exposure in vitro, are the most useful cancer models in studies on the mechanism of chemoresistance. The success rate of the traditional approaches to construct such cell lines is low because a long time is required for the addition of drugs. The stepwise escalation method has been used more commonly because it has a higher success rate [5]. Approaches that combine these two methods have been successful at constructing drug-resistant cell lines. All such approaches took a long time (6~16 months, or more) [5]. The success rate for such approaches is low because a long time is required for the addition of drugs and cell recovery [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call