Abstract

A new two-step phosphorous diffusion gettering (TSPDG) process using a sacrificial porous silicon layer (PSL) is proposed. Due to a decrease in high temperature time, the TSPDG (PSL) process weakens the deterioration in performances of PSL, and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions. By means of the TSPDG (PSL) process under conditions of 900°C/60 min + 700°C/30 min, the effective lifetime of minority carriers in solar-grade (SOG) Si is increased to 14.3 times its original value, and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm2, and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1% to 11.8%, which are much superior to the results achieved by the PDG (PSL) process at 900°C for 90 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.