Abstract

The maximum output provided by a bone conduction (BC) device is one of the main factors that determines the success when treating patients with conductive or mixed hearing loss. Different approaches such as sound pressure measurements using a probe microphone in the external auditory canal or a surface microphone on the forehead have been previously introduced to determine the maximum output of active transcutaneous BC devices that are not directly accessible after implantation. Here, we introduce a method to determine the maximum output hearing level (MOHL) of a transcutaneous active BC device using patients' audiometric data. We determined the maximum output in terms of hearing level MOHL (dB HL) of the Bonebridge using the audiometric and direct BC threshold of the patient together with corresponding force levels at hearing threshold and the maximum force output of the device. Seventy-one patients implanted with the Bonebridge between 2011 and 2020 (average age 45 ± 19 years ranging from 5 to 84 years) were included in this study. The analyses of MOHLs were performed by (1) dividing patients into two groups with better or worse average audiometric BC threshold (0.5, 1, 2, 4 kHz), on the ipsilateral side or (2) by separating the MOHLs based on better or worse frequency-by-frequency specific audiometric BC thresholds on the ipsilateral (implanted) side. When using a frequency-by-frequency analysis obtained average ipsilateral MOHLs were in the range between 51 and 73 dB HL for frequencies from 0.5 to 6 kHz in the group with better audiometric BC threshold on the ipsilateral ears. The average contralateral MOHLs in the group with better contralateral hearing were in the range from 43 to 67 dB HL. The variability of the data was approximately 6 to 11 dB (SDs) across measured frequencies (0.5 to 6 kHz). The average MOHLs were 4 to 8 dB higher across frequencies in the group with better audiometric BC threshold on the ipsilateral ears than in the group with better audiometric BC threshold on the contralateral ears. The differences between groups were significant across measured frequencies (t test; p < 0.05). Our proposed method demonstrates that the individual frequency-specific MOHL on the ipsilateral and contralateral side of individual patients with a transcutaneous BC device can be determined mainly using direct and audiometric BC threshold data of the patients from clinical routine. The average MOHL of the implant was found 4 to 8 dB higher on the ipsilateral (implanted) side than on the contralateral side.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call