Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that repress the expression of their targets. They are known to work cooperatively with genes and play important roles in numerous cellular processes. Identification of miRNA regulatory modules (MRMs) would aid deciphering the combinatorial effects derived from the many-to-many regulatory relationships in complex cellular systems. Here, we develop an effective method called BiCliques Merging (BCM) to predict MRMs based on bicliques merging. By integrating the miRNA/mRNA expression profiles from The Cancer Genome Atlas (TCGA) with the computational target predictions, we construct a weighted miRNA regulatory network for module discovery. The maximal bicliques detected in the network are statistically evaluated and filtered accordingly. We then employed a greedy-based strategy to iteratively merge the remaining bicliques according to their overlaps together with edge weights and the gene-gene interactions. Comparing with existing methods on two cancer datasets from TCGA, we showed that the modules identified by our method are more densely connected and functionally enriched. Moreover, our predicted modules are more enriched for miRNA families and the miRNA-mRNA pairs within the modules are more negatively correlated. Finally, several potential prognostic modules are revealed by Kaplan-Meier survival analysis and breast cancer subtype analysis. BCM is implemented in Java and available for download in the supplementary materials, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/ TCBB.2015.2462370.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.