Abstract

This study examined a novel method to create a long and narrow calibrated capture volume for tracking objects. The methodology relies on the reflection of parallel distance-measuring lasers. Images of a board, blocking the lasers as it is moved through the field of interest, were assembled into a virtual calibration fixture. The method accommodates large calibration volumes and can be used with multiple cameras, providing a consistent absolute positional reference that is difficult to achieve with large mechanical calibration boards. This study considered a 17.4 m long tracking volume. A 0.9 m long rod was tracked throughout the calibrated volume where its average tracked length was within 0.2% of its measured length. The speed of balls traveling through the calibrated volume were within 0.1% of independent speed sensors. The average residual error of a ball’s tracked trajectory and a polynomial fit was within 1.5 mm. The method shows promise as an efficient means of calibrating large calibration volumes with multiple camera pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call