Abstract

There is growing evidence that acoustic cavitation plays an important role in stone fragmentation during extracorporeal shock wave lithotripsy (ESL) treatment. In addition, side effects of the treatment, such as the hemorrhage and destruction of the tissue in the vicinity of the stone are also ascribed to cavitation phenomenon. Since cavitation is associated with the maximum negative pressure in the shock pulse, it would thus appear that possibility of controlling this pressure would be desirable in ESL applications. This paper describes a novel technique developed to control the ratio of compressional peak (P+) to rarefactional peak pressure (P-) of the shock wave for use in lithotripsy treatment. The procedure is based on the finite amplitude wave generation by focused piezoelectric transducers and subsequent interaction of the shocked waves in the common focal region. The highly asymmetrical shock wave is produced in the focal region by providing an appropriate time delay to each of the high voltage electrical excitation signals which drive the transducers. The degree of relative reduction of negative halfcycles and the corresponding positive halfcycles amplification increases with the number of the acoustic sources used. The practical implementation of the shock wave generator was obtained by using 5 cm diameter, focused 1 MHz transmitter, and additional transducers of identical construction having frequencies corresponding to the harmonics and subharmonics of the 1 MHz frequency. The importance of the results for the future development of lithotripters, and stone treatment efficiency is pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call