Abstract

An antifouling treatment based on the combined effects of grafted polyethylene glycol (PEG) polymers and the application of vibration is reported. A gold-coated lead zirconate titanate piezoelectric composite was grafted with PEG used as a model substrate. The PEG grafted surfaces were thoroughly characterized by attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In vitro protein adsorption onto PEG coated surfaces was studied with and without the application of vibration. Bovine serum albumin (BSA) adsorption onto PEG grafted surfaces followed a similar pattern as reported in literature. However, when piezoelectric vibration was applied on the PEG grafted surface, BSA desorption was observed. At very low graft densities, the vibration significantly reduced the BSA adsorption compared with high PEG graft densities. Theoretical calculations showed that the thickness of PEG layer on the surface was affecting vibration induced protein desorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.