Abstract

The purpose was to determine if skinfolds (SF) and bioelectrical impedance analysis (BIA) could provide accurate estimates of body volume (BV) and total body water (TBW), respectively, for use in a 3-compartment (3-C) model to estimate percent body fat (BF%) when compared to laboratory derived measures. A sample of sixty-four men (age = 22.9 ± 5.4 years) and 59 women (age = 21.6 ± 4.3 years) participated in the study. Laboratory 3-C (3CLAB) model BF% was determined with underwater weighing for body volume (BV) and bioimpedance spectroscopy for total body water (TBW). The 3-C field (3CFIELD) estimates of BF% included BV from the 7-site SF technique and TBW from hand-to-foot BIA. A significant difference in BF% (p < 0.01) was found between the 3CLAB and 3CFIELD in the entire sample and within the men, but the effect sizes (ES) were small (0.09 and 0.17, respectively). The difference between means was not significant in the women (ES = 0.05, p = 0.332). Compared to the 3CLAB, the total error (TE) ranged 2.2-2.4% for 3CFIELD, 5.7-5.8% for SF, and 4.0-4.6% for BIA. The findings suggest that BV and TBW derived from SF and BIA, respectively, can be used in a 3CFIELD model to increase the accuracy of BF% estimates over SF and BIA alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.