Abstract

Primitive root is a fundamental concept in modern cryptography as well as in modern number theory. Fermat prime numbers have practical uses in several branches of number theory. As of today, there is no simple general way to compute the primitive roots of a given prime, though there exists methods to find a primitive root that are faster than simply trying every possible number. We prove the equivalence between the primitive roots and the quadratic nonresidues modulo Fermat prime numbers. Therefore, the problem of searching primitive roots is transformed into solving the quadratic residues modulo Fermat primes, which is a much easier problem, having very simple solutions. Theoretical analysis and experimental results verify our conclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.