Abstract

A one-step, real-time reverse-transcription loop-mediated isothermal amplification (rRT-LAMP) method targeting the 5' end of the capsid gene for rapid and quantitative detection of human astrovirus serotype 1 (HAstV 1) was developed. The assay is highly sensitive and comparable to real-time RT-PCR (rRT-PCR), with a detection limit of ∼100 RNA copies per assay. The specificity of the method was validated by the absence of any cross-reaction with RNA samples of HAstV 2-8 and other gastroenteritis viruses, followed by nucleotide sequencing of the amplified product. Fecal specimens (n=120) obtained from children under five years of age with gastroenteritis were tested by rRT-LAMP, rRT-PCR and transmission electron microscopy (TEM). Six (5%) of these samples were determined to be positive by both rRT-LAMP and rRT-PCR assay, and these two nucleic acid amplification methods resulted in a 200% increase in detection rates for HAstV infection compared with TEM alone. Furthermore, the rRT-LAMP assay is much more rapid than rRT-PCR and generates results in less than 20min for positive samples. The quantitation of viral load in stool specimens was determined from the standard curve plot of time-of-positivity versus initial RNA concentration. Most viral loads were determined to be within the range of 10(5)-10(8) copies. The results highlight the significance of the rapid rRT-LAMP method as a diagnostic and routine screening tool for the analysis of stool samples in hospital laboratories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.