Abstract

The aim of this study was to objectively detect simulated tooth ankylosis using a novel method involving cone-beam computed tomography (CBCT). Tooth ankylosis was simulated in single-rooted human permanent teeth, and CBCT scans were acquired at different current levels (5, 6.3, and 8 mA) and voxel sizes (0.08, 0.125, and 0.2). In axial reconstructions, a line of interest was perpendicularly placed over the periodontal ligament space of 21 ankylosed and 21 non-ankylosed regions, and the CBCT grey values of all voxels along the line of interest were plotted against their corresponding X-coordinates through a line graph to generate a profile. The image contrast was increased by 30% and 60% and the profile assessment was repeated. The internal area of the resulting parabolas was obtained from all images and compared between ankylosed and non-ankylosed regions under different contrast enhancement conditions, voxel sizes, and mA levels using multi-way analysis of variance with the Tukey post hoc test (α=0.05). The internal area of the parabolas of all non-ankylosed regions was significantly higher than that of the ankylosed regions (P<0.05). Contrast enhancement led to a significantly greater internal area of the parabolas of non-ankylosed regions (P<0.05). Overall, voxel size and mA did not significantly influence the internal area of the parabolas (P>0.05). The proposed novel method revealed a relevant degree of applicability in the detection of simulated tooth ankylosis; increased image contrast led to greater detectability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.