Abstract
A novel method of generating zero order non-diffracting Mathieu beam with an axicon is proposed. To create quasi non-diffracting Mahtieu beam, an axicon is used to focus a plane wave modulated by elliptical Gaussian amplitude. Based on the formula of diffraction integral of a plane wave modulated by elliptical Gaussian amplitude propagating through the axicon, the intensity of quasi non-diffracting beam is simulated numerically. The maximum propagation distance of the quasi-non-diffracting Mathieu beam is calculated according to a geometrical optical model. To verify the results of the theory, an experimental setup is designed.Using a cylindrical lens and a collimating and expanding system, a circular Gaussian beam can be converted in to a plane wave modulated by elliptical Gaussian amplitude. Focusing the plane wave using an axicon, a qausi-non-diffracting Mathieu beam can be generated. The exoerimental results are consistent with theoretical calcuations and numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.