Abstract

For the difficulty of obtaining cluster result fast and effectively under the limitations of bounded memory and time, this paper proposes a novel data stream clustering method based on wavelet timing series tree synopsis to solve the problem. The proposed method considers the attenuation characteristic of data stream, which combines the dynamic maintenance of wavelet coefficient and attenuation feature of wavelet coefficients of data stream, and can achieve approximate representation of data stream fragment information and dynamic maintenance of its synopsis structure. The proposed method employs wavelet timing series tree synopsis method to compress data stream fragment, then adopts two-phase density clustering algorithm to cluster. Detailed experiments show that the proposed method can get high compression quality, good space and time efficiency and good clustering results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.