Abstract
<p>Core-shell type magnetic nanoparticles are finding attractive applications in biomedicine, from diagnostic to cancer therapy. Both for targeted drug delivery and hyperthermia, as well as a contrast agent used for external biomedical imaging systems, small (&lt; 20 nm) superparamagnetic nanoparticles are desired. Some iron oxide nanoparticle formulations are already approved for human administration as contrast agent for magnetic resonance imaging. However, search continues for nanoparticles with higher saturation magnetisation. Metallic, bi-metallic and intermetallic magnetic nanoparticles are finding attention. Biocompatibility and optimal clearance are important criteria for the medical applications and therefore core-shell type particles are favored, where a biocompatible shell (e.g. polymer, Silica) can prevent inadvertent host reaction with the magnetic core. A recently developed novel synthesis method (electrochemical selective phase dissolution - ESPD), which can produce core-shell magnetic nanoparticles, is reviewed in this paper. ESPD, as the name suggests, uses electro-chemical separation of a phase from metallic alloys to synthesize nanoparticles. It is a versatile method and can be adopted to produce a wide range of nanostructures in addition to the core-shell magnetic nanoparticles.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.