Abstract

Current mouthguard test methods require improvement, as the impact energies during traditional testing do not reflect the higher energy that can be observed in actual use during sport. A new data set of ball speeds experienced during the sport of field hockey was obtained. These ball speeds have then been used to estimate impact energies. This information was used to subsequently develop a new test method consisting of a high-speed camera and drop tower. Observations show an increase in energy experienced by the mouthguard for higher-impact energies. The work carried out showed that current testing methods for sports mouthguards use lower-energy impacts than experienced during the sport of field hockey. The new method that is proposed allows for a more realistic representation of real-world impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call