Abstract

Characterizing the properties (e.g., effective dielectric constant εeff, attenuation constant α, and characteristic impedance Z0) of terahertz (THz) superconducting transmission lines is of particular interest in designing on-chip integrated THz bandpass filters, which are a critical component for THz astronomical instruments, such as multi-color camera and broadband imaging spectrometers. Here, we propose a novel method for the characterization of three parameters (εeff, α, and Z0) of THz superconducting transmission lines. This method measures the ratio of the THz signal powers through two different-length branches of the superconducting transmission line to be measured. In addition, only one measurement is required for an all-in-one device chip, including an antenna, a half-power divider, the superconducting transmission line to be measured, and two detectors. The key point is that the superconducting transmission line to be measured is impedance-mismatched with the two integrated detectors. The method is validated through simulation and measurement for superconducting coplanar waveguide transmission lines around 400GHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call