Abstract
The ability to study and regulate cell behavior at a biomaterial interface requires strict control over material surface chemistry. Perhaps the greatest challenge to researchers working in this area is preventing the fouling of a given surface due to uncontrolled protein adsorption. This work describes a method for coupling peptides to hydrophobic materials for the purpose of simultaneously preventing nonspecific protein adsorption and controlling cell adhesion. A hexapeptide containing the ubiquitous RGD cell-adhesion motif was coupled to polystyrene (PS) via a polyethylene oxide (PEO) tether in the form of a modified PEO/PPO/PEO triblock copolymer. Triblocks were adsorbed onto PS at a density of 3.3 ± (5.14 × 10−4) mg/m2 (1.4 × 105 ± 2.12 × 101 molecules/μm2), which was determined by isotope 125I labeling. The peptide, GRGDSY, was activated at the N terminus with N-Succinimidyl 3-(2-pyridyldithio) propionate and coupled to immobilized triblocks where the terminal hydroxyls had been converted to sulfhydryl groups. Surface peptide density was measured by amino acid analysis and found to be 1.4 × 104 ± 0.47 × 104 molecules/μm2. PS modified with PEO/PPO/PEO copolymers alone was found to be inert to cell adhesion both in the presence of serum proteins and when exposed to activated RGD peptide. In contrast, PS conjugated with RGD via end-group-activated PEO/PPO/PEO copolymers supported cell adhesion and spreading. The surface coupling scheme reported here should prove valuable for studying cell–ligand interactions under simplified and highly controlled conditions. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 511–519, 1998.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.